80% of executives believe that automation can be applied to any business decision, according to a recent Gartner survey. Businesses are automating a wide range of business processes and operations, from simple and repetitive tasks to complex and mission-critical operations.
Companies have been working to become more data-driven for many years at this point, with mixed results – only 26.5% of companies indicate that their organization is data-driven. Automation tools directly impact brand success and are frequently adopted and integrated by businesses to stay competitive within their industry, and enable data-driven transformation. Data-driven automation enables businesses to improve operational efficiency, make better decisions, and deliver an enhanced customer experience.
Automation projects can be a slippery slope – if not executed properly, it can adversely impact data processes, usage, employee confidence and the customer experience. To realize the value of automation, data and analytics must champion data-driven automation as a strategic thread of business DNA, not a tactical one-off project.
As businesses look for opportunities to modernize their processes and optimize operations via data-driven automation tools, they must first develop a meaningful strategy. This requires a well-planned approach that includes clear objectives, appropriate technologies, and the right skills.
The first step in building a strategy for data-driven automation is to define clear objectives. These objectives should be aligned with the organization’s overall business strategy and should be specific and measurable. A scoring methodology can help businesses rate opportunities for automation according to business impact while sustaining an ongoing backlog for prioritization.
Organizations also need to have the necessary tools & skills in place to support their automation strategy. They must carefully consider which technologies are best suited for them – like robotic process automation (RPA), artificial intelligence (AI) or machine learning (ML). Having experts such as data scientists, engineers and specialists on board will guarantee faster results.
In short, data-driven automation is no longer a luxury but a necessity for today’s organizations who are looking to thrive in an ever-changing market.
Check out the full article for data-driven automation usecases and more steps for successful implementation.
Recent Blogs

Enterprise Guide to Building Scalable GenAI Solutions on AWS with Infocepts
August 7, 2025

Why Modern Enterprises Are Turning to Conversational & Agentic AI for Insights
July 21, 2025

Bots to Brains: How Agentic AI is Changing the Game
July 8, 2025

The Future of Supply Chains Is AI-Driven—Is Your Business Ready to Embrace the Change?
July 2, 2025